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ABSTRACT
This paper describes a canonical procedure to approximate an arbitrary
family of C  vector fields {g1,...,gm} on R with vector fields
61""'§m on the same space rd which generate a nilpotent Lie algebra.
Bach 51 can be either obtained from a Taylor expansion of the input-output

map for the control system
(*) x= 1 gi(x)ui, x(0) =0 ,

or computed directly as an asymptotic limit of the corresponding vector
field g;. A useful consequence is that every control system of the form (*)

o0
can locally be regarded as an arbitrarily small C perturbation of a

nilpotent system on the same state space, up to a suitable linear rescaling of

coordinates.
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SIGNIFICANCE AND EXPLANATION
If a family of vector fields {61""'§m} generates a nilpotent Lie

algebra, then the response of the control system

m
X(t) = ) g (x)u (t), x(0) = 0 e &
i i
i=1
can be written out explicitly in terms of integrals of the controls u . This
and other nice consequences make nilpotency a highly desirable property from
the point of view of mathematical analysis.
_,,‘,,*_;'.7—;*'.&/ (): o
~fhe present-paper describes a canonical method to locally approximate any
ssel  Sae oM
family {g’,...,gﬁ} of vector fields by one which generates a nilpotent Lie
algebra. This is particularly useful in control theory, because it shows that

an arbitrary control system can locally be obtained from a small pef%urbation

of a nilpotent system, by a suitable rescaling of the coordinates.
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LOCAL ASYMPTOTIC APPROXIMATION OF NONLINEAR CONTROL SYSTEMS
Alberto Bressan*
1. INTRODUCTION
This paper is concerned with an autonomous nonlinear control system of the form
m
k(e) = ) g (x(t)u(t), x(0) =o€ &, (1. 1)

i=1
where the g, are C., globally bounded vector fields on ud and
u(s) = (u1(°),...,un) e L1([0.°)1IP). The system (1.1) generates a smooth input-output
map ¢ : u(*) + x(u,*) from L'([O,'):RF) into Co([0,°)1l9). Explicitly computable
approximations of ¢ are of primary importance in the local study of (1.1). The p-th
order Taylor expansion ™) of ¢ about the null control was studied in [1,3]. 1In [8] it
is shown how the trajectories of (1.1) can be locally approximated by means of an

additional (nilpotent) system, say

m
X(t) = ) £.(x(eDu (t), x(0) =o0erd . (1.2)
i i
i=1
For certain applications, such as the computation of a local time-optimal feedback [2],
both approaches seem unsatisfactory. In general, TPO is merely a sum of multilinear

° and does not arise as the exact input-output map of

integral mappings from I.1 into C
any control system. The optimality of a given control u under Tpo cannot therefore be
tested by the Maximum Principle. On the other hand, the vector fields £, in (1.2)
represent a lifting of the g; ({ = 1,...,m) in a usually higher dimensional space .
It is not always possible to determine a local property of (1.1) by studying (1.2), since

the two systems live on different spaces.

*Istituto 4i Matematica Applicata, Universitd 4i Padova, 35100, Italy

Sponsored by the United States Army under Contract No. DAAG29-80-C=-0041.
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Using a singular perturbation technique, in this paper we derive a canonical procedure

to approximate the vector fields 9; with a nilpotent family (;1""';n? of vector

fields defined on the same state space ﬂd. The main construction is as follows. For
small ¢ > 0, the restriction of the map ¢ to controls with support inside ([0,6] can
be rescaled to a map ¢ from L'((0,11;®) into c%((0,11s%)). This is achieved by
& means of the transformation t + c-'t of the time variable and by letting a suitable
family of dilations 6: act on the apace variables. For each € > 0, .e is thus the
input-ocutput map generated by the control system
. .,
x(t) = &1 g, (x(t)u, (e),  x(0) =0 er?, (1.3)

where the vector fields gi are obtained from the g; after a rescaling of coordinates.
: As € + 0, there exist a map ¢ and vector fields g, on K such that 4% + § ana
gi hd ;1 together with all derivatives, uniformly on bounded sets. ; is then the input-

output map corresponding to the control system

m
l k(t) = ) g (x(t)u, (t), x(0) =¢C . (1.4)
i i

’ 1=1

l The vector fields §1 have polynomial coefficients ané¢ are invariant under a f1-parameter
group of transformations. Moreover, without any assumption on the Lie algebra generated
by gqse++,gys it turns out that Lie (31,...,§m} is always nilpotent, so that the
solutions of (1.4) can be written in closed form (7). This remarkable feature makes the
system (1.4) an attractive object for a detailed mathematical analysis. Indeed, since

(1.4) is obtained as a uniform limit of (1.3) as € + 0, any property of (1.4) which is

% retained under small ¢ perturbations (4] yields a local property of (1.1).




. 3

2. PRELIMINARIES
In the following, we use |*| for the euclidean norm on 8 and 1.1 for the norm
in Banach spaces. The closed ball centered at x with radius r is denoted B(x,r),
while @ indicates tensor product. Given two Banach spaces E and F, k > 0, we denote
by Lk(!t!) the space of continuous k-linear mappings A from S E=~EQ@E® ... R E (k
times) into F with the operator norm *
1AL = sup(lA(v1,...,vk)lF; Tv o €1, 4 = 1,000k .
If $ : E+ F is a smooth mapping, its k-th Fréchet derivative a a point u e E is
D*W(u) e t(E;F). The k=th order Taylor expansion of ¥ at the origin is then

k
Ty = ) 37 M0y o l3]

L
y=0 3!

where u[j’ = (Q,u,...,u) € @ E. The same notation Tkg is used for the k-th order Taylor
b
expansion of a vector field g on ¥ at the origin. It was shown in (1] that the n-th
order Taylor expansion ™ of the input-ocutput map ¢ generated by (1.1) about the null
control can be obtained by computing the n-th Picard iterate for the approximate system
m
k(e) = ) g (xte)ugle),  x(0) =0, (2.1
i=1
discarding the terms of order >n. The multilinear integral mappings
u s 51(0,') + CO(O,') arising from the above procedure were called in [1] integral

monomials. If U is k-linear, we say that u has order k. The first Picard iterate for

(2.1) is
t

m
Pylu,t) = ) | g;(0)u (s)ds .
i=1 0
In general, if the k-th Picard iterate for (2.1) is a sum of integral monomials, say
N(k)
Pk(“'t) - 1%1 Ui(“:t) )

then Py,4 can again be written as a sum of terms of the type

-3
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t 1 3
ulu,t) -J - D 91(0) L4 (Ui (W,8)sse0 0l
0

31 . ij(u,l))ui(l)dt (2.2)

where 0€< 3<n, 1¢4i<m If uy has order Vv, (L = 1,.00,3), then u in (2.2) has

2
order Vv, +* eee * “j + 1. The above construction canonically determines an increasing

sequence of subspaces zp_g 2, namely Zo = {0}, 2z, = span{gi(O); i=1,.,..,m and

inductively

z, = -pln{bjgi(o)  (vgserevyhs 1S 1M, 03 <p,

vjezp,p1+...+pj<p)- (2.3)

Comparing (2.3) with (2.2), it is clear that
®p(u)(t) € z,
is precisely the subspace of ¥ spanned by

(2.4)

for all p> 0, ue L‘, t » 0. Indeed, zp

the coefficients of the integral monomials of order < p in the Taylor expansion of ¢

about the null control.

-4~
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3. A CLASS OF NILPOTENT LIE ALGEBRAS

All of the vector fields arising from the asymptotic limit procedure considered in
this paper generate a special type of Lie algebras which we now briefly describe. For a
different approach, based on the dual action of vector fields as derivations on ¢
functions, see [6]. Given an orthogonal decomposition ld - w1 ® ... 0 W;, let wp be

the canonical projection of ® and s%— the differentiation w.r.t. the p~th component
P

of x. Define L (L, for r » 0) to be the set of all smooth vector fields

f= (f1""'f5) on ld such that

whenever k » 0, 1€q < p and Pyt e tp g (py*eeo tp?q-1x). For r2 P
L, contains only the null vector field. From the above definitions it follows
LEMMA 1. L is a finite dimensional nilpotent Lie algebra of vector fields with
polynomial components, with the usual bracket operation [(f,g] = (Dg) * £ - (Df) °* g,
and L = Ly DLy 2 eee 2 LS = {0} is a decreasing sequence of ideals, indeed
(Lrolgl & Lyyge (3.1)

PROOF. If f € L, any p-th derivative of £ vanishes identically. Hence L

contains only vector fields whose components are polynomials of degree less than p. 1In
particular, L is finite dimensional. To prove (3.1), let ferL, gelL, k20,
QiPqrocesPy € {1,...,5} with py + «vo + py > g-r-s-1. Denoting fq = qu, 9q = wqg the
q=~th components of f and g, one has

x k p

3 ] L)

X ... X 1‘q[mf) *ql Ix_ ... ox [ ) (ax fq) ° gi] ¢ 3.2)
1 pk Py Py i=1 i

Notice that the right~hand side of (3,2) can be written as a sum of terms having the form

ah*1 ak-h

(5= TP PR ) ) 0[5z AV T s,
Pa(1) Po(h) Pg(n+1) Ps(x)

(3.3)

-5a




«F —————- R
N —

where 0 € h<k, 1<i<p and ¢ is a permutation of the set {1,...,k}. 1f

Pag1y ¥ **c * Pop) * i2q=-r, the first term in the tensor product (3.3) vanishes

identically. Otherwise pa(,) + cee + Py(h) < g-r-i-1, hence
} Po(ne1) + see # Py (x) > (g=r-s~1) = lq=r~i~-1) = 1 - g

and the second factor in (3.3) vanishes. Therefore (Df) ® g€ L., .4 Similarly '

’ (bg) * £ @ Lo tg+1s hence (3.1) holds, proving the nilpotency of L.

-
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4. STATEMENT OF THE MAIN RESULT

With the increasing sequence of subspaces Zp g_lﬁ defined at (2.3) cne can associate

an orthogonal decomposition

d
R W1 ® ... ® Wp (4. 1)

as follows. Fix any 5 > i, For 1< pc« S let wp be the orthogonal complement of

zp_, in zp, and let w§ be the orthogonal complement of zs_, in . Tnis clearly

yields (4.1). The canonical projection of # onto wp ig denoted lp- In addition to

the input-output map ¢ : u(*) + x(u,*) generated by (1.1), for 0 <¢ € 1 we can now

define the rescaled maps ¢% 2 uie) + x%(u,e) by setting

p
x(u,t) = L €

“Py_(x(eu,t)) . (4.2)
1 P
By direct computation one checks that
€ n €, € € ?
x (u,t) = ) g, (x (u,t))u,(t), x (u,0) = 0 (4.3)
i=1
with
P P
1=
g0 =) ¢ Prfg() ejwj(x))] . (4.4)
p~1 POty

Our major interest is in the behavior of the rescaled system (4.3) as ¢ + 0.

THEOREM. Let g; (i = 1,...,m) be C, glabally bounded vector fields on R, ana
let Oc,xs,gi be defined by (4.2), (4.4), corresponding to the decomposition (4.7%)
obtained from (2.3). Then as € + 0

1) Oc converges to $ : ul(*) * x(u,*), defined by

-

- P p
$(ud(e) = ) = (T é(ud(t)] . (4.5)
p=1 P

More precisely, for all k > O, n“o‘ tends to o*i uniformly on bounded subsets of

Lo, 0.




-

ii) Por all i = 1,...,m, qi converges to g,, defined by

p l{ [‘T ) LIS BT IY (x) (x)1)

g, (x) = " — D7g ( " K)gvoe,N x) ’ (4.6)
i p=1 P 4=0 oel(p, ) L i a(1) a(3)

T(p,3) being the set of all maps O : {1,...,3} + {t,...,p} for which .

0(1) + ... +0(jJ) =p -1 PFor all x » 90, Dkgi tends to Dk;1 uniformly on bounded

subsets of .

1i4) TFor all wu(+) € l-1. the trajectory t * x(u,t) = §(u)(t) is the solution of

m
X(e) = ) ;i(x(t))ui(t), x(0) =0 . {(%7)
i=1

iv) Lle {51,...,§m} is nilpotent.

- e e
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5. PROOF OF THE THEOREM

Fix any P @ {1,...,p) and write
wp(o°(u)(:)) - e‘Pnp<o(eu)(t))

- e'prp(rp¢(eu)(:)) + c'Pnp(n(eu)(c))

where n = ¢ - T8, the remainder of the p-th order Taylor expansion of ¢ about the null
control, is a c” map from L‘([O,*):Rm) into C((O,ﬂ))kd) with Djn(O) =0 for

0< j<p. By (2.4), IPTP-10 £ 0. Therefore, IPTPQ is a homogeneous p-linear mapping,
and

e'pwprpa(cu) - prpo(u) ¥e>o0 . (5.1)

To prove i) it now suffices to show that, for all k > 0, e-pDk(np ° ne)(u) converges to
zero uniformly as u ranges on bounded subsets of L‘, n® being the map u + n(eu). The
assumptions on n imply the existence of a constant C > 0 sguch that

1050 (w1 < ¢ min{1atP ¥, 1y

whenever lul < C-1- If U is a bounded gubset of L‘, choose ¢, > 0 8o small that

eV _B0,CT). If ueu and O<cece

0 then

0
1ePofr o nfyut X Pip*n(euit ¢ ce* Pemin(eP ™ Nt 1y . (5.2)

In both cases k > p or k< p, as € + 0 the right-hand side of (5.2) converges to zero

uniformly on U. This establishes i). The proof of ii) is <imilar: fix 1 e {1,...,m}

and p € {1,.-.,5}- Using a Taylor expansion of g; of order P - 1 with remainder

h(+*), from (4.6) one obtains

- F
€ - 1-p PT1 14 3 6(1) a(3)
'pqi(x) WP[c ) 37 D gi(O)(e 10(1)(x),...,e no(j)(x))]
3=0 °" oer,
. P
+weP n( ) elwl(x)] (5.3)
P =1

where T, 1s the set of all maps o from {1,...,4} into {%,...,p} and h isa C

3
vector field on Rd with Djh(O) =0 for = 1,...,§ = 1. The generic term in the first

summation in (5.3) is a homogeneous j-linear map from &2 into wp of the form

-9
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oo [l 1-p 3 al1) ()
" Yiex) np[j‘ € "Pplg (03(e® a0 (x)0uel e wo(j)(x))]

1-p-8
-n (L 953
wp[j, € D qi(O)(ﬂ°(1)(x).-~-.ﬂo(j,(x))]

1=-p+8
with 8 = 0(1) + ... +0(3). If S >p, then lim ¥(€,x) = lime “%(1,x) = 0 ana -

e+0 €+0
the same holds for all derivatives of ¥ w.r.t. x, uniformly on bounded subsets of

Id. If s° =p=-1, then Y¥(e,x) = ¥(1,x) does not depend on ¢. If sc <p-1, since

(x) e 2 ) (L= 1,.4.,3), the definition of 2 implies ¥(e,x) @ zp_,, hence

Ta(r) a2 p=1
'p ¢ ¥(e,x) = 0. To prove ii) it now suffices to show that the second summand on the

right-hand side of (5.3) converges to zero as ¢ + 0. For every k > 0, the assumptions
on h(*) imply the existence of a constant C > 0 for which

Io%n(x)| < comin(|xIP7*, 1) (5.4)
whenever |[x| ¢ c‘. Let V be a bounded subset of RF, .and choose €0 e (0,1] so small

-1 € p P,
that €V _B(0,C ). For 0 <e <y, set h (x)=h() ¢ wp(x)]. From (5.4) it

p=1
follows the estimate

e1-p|the(x)| - ci-plup(lbkhe(x)'y[k]|-Iy|-k; y e nd\(o}}

P f -4

1= =

<e psup{lbkh( Y ePr (x))e( ) ePn (Y))[k]|‘|Y| *, vy* o}
1 P =1 P

< c1-pgup{c‘m1n{Iex|p-k,1}-|eylk'Iyl-kv y * 0}

< ce TP Enin(eP* P, 1} (5.5)

In both cases k » p or k < p, the right-hand side of (5.5) converges to zeroc vniformly
on V, as € + 0. Since the above holds for every i and p, il) is proved. Using i)

and ii), iii) follows from (4.3), letting € + 0 in the equality

t m
Flue) =) ) qi(xe(u,s))u(s)da .
0 i=1

Finally, we check that each 61 belongs to the Lie algebra 1L defined in §3,
corresponding to the decomposition (4.1). Let k > 0, q,pys+++/Py © {1,..0,p},

Py * eoo t py > gq. By (4.6), the g-th component of ;1 is a sum of terms of the form

-10- i
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®(x) nq[b 91(0)('q (x)....,wq {x))]

with qq + ... + 94 = g - 1. We therefore have
k
3°¢
Ix ves OX (x) 0
1 Py

for all x e lF unlegs there exists an injection ¢ of the set {1,...,kx} into the set

{1,...,3)} such that Gg(t) = Py for all & = 1,...,k. But the existence of such an

injection would contradict the assumption Py + oo tpp 2 q. Therefore ;1 e L for all

ie{1,...,m}. By Lemma t, Lie {51,....§m} is a subalgebra of a nilpotent Lie algebra.

This completes the proof.




6. CONCLUDING REMARKS

The above results also apply to control systems

x(t) = ; X (x(t)uy(t),  x(0) = & (6.1)
i=1
on a d-dimensional manifold M. Indeed, if the Lie algebra generated by x,,....xm has
full rank at £, then among «. itverated brackets of the X;'s one can choose & vector
fields, say Y,,...,Yd, which are linearly independent at E- The map
8 1 (my,000,85) * (@xp 8,¥q) ¢ .c. ® (oxp -de)(E) (6.2)
j thus defines a local chart of a neighborhocod of E in M ([8]. The asymptotic expansion
! considered in §4 can now bhe performed for the system on e corresponding to (6.1) in this
’ canonical chart.
The present approximation technique enables one to study = local problem concerning
(1.1) by first solving the corresponding problem for the system (4.7) and by then proving
that the structure of the solutions is "stable” under suitably small ¢ perturbations of
the vector fields 51- This approach is adopted in [2] to atudy the local time-optimal
i stabilizing feedback for a generic three-dimensional nonlinear system with scalar control.
The analysis of the control syatem (4.7) takes advantage from the explicit

representation (4.5) of trajectories in terms of integrals of the controls. One can also

!
j make use of the special properties of the vector fields Ei in connection with the family
V‘ r of dilations GE [ Rd > R#,
K :
Sgx) = ) ePr_(x)
1 ot P

{see [6)). Some useful consequences deserve mention. Fix a compact convex set @ C K

and define the admissible set of controls

U= {ule) e L (10, 8™ ult) en ve> o0} .

1
{ Given a control u e U, for £ > 0 define “E(t) = y(Et). Call R(T) the set reachable
]

at time T by trajectories t * x{u,t) of (4.7) with controls in U. With these

conventions we have




e
t
€,
%
*
X
)
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LEMMA 2, Let E£E>0, t >0, i1e{1,...,m}, ueu. Then

- p -
3,8, tx0) = ) P (3, (x)) (7.1)
p 1
p=1
Eg, (8, (x)) = &.(g, (x)) , (7.2)
;(Eue,t) = x(u,Et) = GE(;(ue,c)) , (7.3)
(1.4)

£y = & 1) .
R(E) ER( )

PROOF. By (4.6), lpgi(GE(x)) is a sum of terma having the form

-x [Lpd
(8, (x)) wp[jl plq,(0) (16(1)(65(x)),...,wa(j)(6e(x)))]

Vith O(1) + ... +0(§) =p = 1. Therefors Y(5.(x)) = P "(x). Thus yields (7.1).

Multiplying both sides of (7.1) by E, one gets (7.2). The first equality in (7.3) holds

simply because (4.7) is ar autonomous system, linear in u. Moreover

»n t
) | (Eg, (x(u,EL)) - Bc(gi(x(ug.t)))ldt .

x{u,Et) - &, (x(u,,t)) =
£ 11 0

Gronwall's lemma and (7.2) now yield the second equality in (7.3), from which (7.4) follows

by setting ¢t = 1.

Notice that a control u € U is time-optimal on [0,f) iff up is time-optimal on
If {(4.7) admits a regular time-optimal feedback up and if t + u(t) is optimal

{o,").
on (0,T], then for t € [0,T])
up(X(u,Ee)) = wlEL) = u (£) = u lxlug,e)) = u (8, (X(u,Ee))) .

Therefore we expect up to be invariant under dilations.




7. AN EXAMPLE
Consider the two-dimensional system

%; (x,y) = (uq + sin(x + yluy, (1 ~ cos(x + y)luy} , (7.1}

(x(0),y(0)) = (0,0) .

Computing the third Picard iterate for the reduced system
(x,y) = (\l, + (x + Y)\lz; 1/2 (x + Y)z\\z). (x(0),y(0)) = (0,0)

—

at

and discarding terms of order > 3, one obtains the third order Taylor expansion of the

input-output map ¢ generated by (7.1):

3 t t [ ]
Teie) = () uta)ds +) (] wu lo)d0)u,(e)ds
0 0 0

t 01 02
1 (7 (] utey180,)u,00,)80,)u, (0,040,
o o o

t

150 (0)40)u, (s)as)
24 9 2 ‘

In this case 2, = Z, =~ W, = {(x,0);x € R}, 2Z;= R,
W, = {(0,00}, w, = {(0,ylsy € R} .
The "homogenized" expansion (4.5) 1is

1.t

t ]
Jaie) = (] uymas, 3/ () u to180)%u,(s)a0)
0 o o

which exactly represents the rssponse of

a
S tu) = e fuy), (x(0),y(0)) = (0,0 . (7.2)

If the set of admissible controls is
0= {u= (a0 €1 000,218 luy(e)] € 1, uy(e) =1, ved 0},

the reachable sets for (7.2) are

3
Ree) = (ooy) ¢ Br 3 1xi? €y ¢ S (5 ¢ Pixl + elnl? - 1x1?)

and the relations




e ———

| (x,y) € R(t) iff (Ex;ﬁay) e Rr(Et)

hold for every t,E > 0. A time-optimal feedback for (7.2) is

up(x,y) = (1,1) on A%, uplx,y) = (=1,1) on A~ ,

with
' At = (tx,y)1 x>0, y = % YU {(x,y)1 x <0, y> % Ix1%)
A = x,y)r (=x,y) e A’} .
! Notice that u, is invariant w.r.t. all dilations 65 : (x,y) * (Ex,Esy). € >0.

—

- -

-15~
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